Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles

نویسنده

  • C. Haase
چکیده

For clinical hyperthermia treatment the heating efficiency of magnetic nanoparticle ensembles is a crucial element. Using efficient algorithms, this heating is studied numerically with a focus on the effects of dipole-dipole interparticle interactions. For the time evolution of realistically modeled systems an approach based on the Landau-Lifschitz-Gilbert equation of motion with Langevin dynamics is taken. Our results suggest a widely negative influence of dipole-dipole interactions on the heating power of nanoparticles. However, considering ensembles within a fixed, given sample volume an optimal particle density exists. The presented results may have important implications for the medical use of magnetic hyperthermia treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia

Nanostructured magnetic systems have many applications, including potential use in cancer therapy deriving from their ability to heat in alternating magnetic fields. In this work we explore the influence of particle chain formation on the normalized heating properties, or specific loss power (SLP) of both low- (spherical) and high- (parallelepiped) anisotropy ferrite-based magnetic fluids. Anal...

متن کامل

The role of electroweak penguin and magnetic dipole QCD penguin on hadronic b Quark Decays

This research, works with the effective Hamiltonian and the quark model. Using, the decay rates of matter-antimatter of b quark was investigated. We described the effective Hamiltonian theory which was applied to the calculation of current-current (Q1,2), QCD penguin (Q3,…,6), magnetic dipole (Q8) and electroweak penguin (Q7,…,10) decay rates. The gluonic penguin structure of hadronic decays ...

متن کامل

Calculation of the Induced Charge Distribution on the Surface of a Metallic Nanoparticle Due to an Oscillating Dipole Using Discrete Dipole Approximation method

In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA) method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of...

متن کامل

Generation of Controllable Heating Patterns for Interstitial Microwave Hyperthermia by Coaxial-Dipole Antennas

Hyperthermia is one of the modalities for cancer treatment, utilizing the difference of thermal sensitivity between tumor and normal tissue. Interstitial microwave hyperthermia is one of the heating schemes and it is applied to a localized tumor. In the treatments, heating pattern control around antennas are important, especially for the treatment in and around critical organs. This paper intro...

متن کامل

Induced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study

In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012